Chapter 14 Written Homework Problems
 DUE: April 14th at the beginning of class
 SHOW ALL WORK FOR FULL CREDIT

1. What is the equation describing the displacement of an object as a function of time if the object undergoes simple harmonic motion (a) with amplitude 1.0 cm , frequency 5.0 Hz , and maximum displacement at $t=0$ and (b) with amplitude 3.5 cm , angular frequency of $2.0 / \mathrm{s}$ and maximum velocity at $t=0$.
2. An object is attached to a spring and undergoes simple harmonic motion. If its mass is 100 g , its maximum acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$ and its maximum speed is $4.5 \mathrm{~m} / \mathrm{s}$, what is (a) its angular frequency, (b) the spring constant, and (c) the amplitude of the motion?
3. Mass $M_{1}(=2.0 \mathrm{~kg})$ is on a frictionless surface and attached to a spring with spring constant k $(=25 \mathrm{~N} / \mathrm{m})$ as shown in the Figure. The block is oscillating with a phase constant $\varphi_{1}(=-\pi / 2)$ and amplitude $A_{1}(=5 \mathrm{~cm})$, as given by $x(t)=A_{1} \cos (\omega t-\pi / 2)$. A block of mass $M_{2}(=1.0 \mathrm{~kg})$ moving with a speed $v(=2.0 \mathrm{~m} / \mathrm{s})$ hits and sticks to the first block. M_{2} strikes M_{1} when the spring is at is maximum extension. What is the (a) frequency, and (b) amplitude of the motion of the $M_{1}+M_{2}$ combination?
4. The shape of a frictionless slope is given by $y=\alpha x^{2}$, where α is a constant with units of $\left[\mathrm{m}^{-1}\right]$. A mass is placed on this slope and released. What is the period of its oscillation?

5. Consider a point of mass m attached to the outside edge of the end of a solid cylinder of mass M and radius R, as shown in the Figure. Show that the period of oscillation of this system if it is rolled slightly away from its equilibrium position and released is given by $2 \pi(3 M R / 2 m g)^{1 / 2}$. Assume $m \ll M$.

6. Now suppose that the disk in \#5 above, instead of sitting on the ground, rotates about a horizontal axle oriented perpendicular to the page and through its center. Assume the axle is frictionless. What is the period of oscillation? Explain the difference between your answer in \#5 and your answer here.
